BIODIESEL

Dr. Rudolf Diesel - 1895

- Peanut oil

The use of vegetable oils for engine fuel may seem insignificant today. But such oils may become in course of time as important as petroleum and the coal tar products of the present time.

Rudolph Diesel was born in Paris in 1858 to German parents, both hailing from the Bavarian town of Augsburg. After studying mechanical engineering at Munich Polytechnic, Diesel rose to prominence with his ideas on how compression-ignited engines powered by a biomass fuel like vegetable oil, could outperform both steam and petrol-powered engines, as well as empower small businesses and farmers in a world where energy production was becoming increasingly monopolized by large petroleum corporations.

The first diesel engine was ready for testing on December 31st 1896 and by the turn of the century, Diesel (by now a devout family man) was a multi millionaire. His patents were being bought by engine manufacturers in Europe and the USA. Despite his financial windfalls, Diesel was a big spender and his money woes contributed to severe headaches and even a nervous breakdown.

By 1912, Europe's troubled politics were approaching their own breakdown. Diesel was courted by Germany, France and England to supply their naval fleets with diesel engines. Diesel's politics were somewhat anti-Kaizer at the time, being more Anglo/Franco-friendly, which is the fuel that feeds the conspiracy surrounding the cause of his death on the 29th September 1913, when he vanished during an overnight crossing of the English Channel on a mail steamer sailing from Antwerp to England. Was he on his way to England to sell the Royal Navy his engine when a German or French assassin pushed him overboard? Or was it a murderer hired by the giant oil conglomerates to 'neutralise' this 'alternative upstart'? Or was it a depressed, bankrupt Rudi himself, who, according to historians, left 20 000 Marks and bank statements showing all his accounts empty in a bag he told his wife not to open, who, wracked by the pressures of success, threw himself over the railings of the steamer into the chilly waters of the channel?

What we do know is that shortly after his death, the German submarine fleet became powered solely by diesel engines, called itself the 'Wolf Pack' and went on to inflict major damage to Allied shipping during World War One.

His family refuses to believe it was suicide...what do you believe?
Rudolph Diesel, the German who invented the diesel fuel process, made the engine run on peanut oil fuel. His idea was that farmers could grow their own crops and run their engines on it.

Today Growing Vegetable Diesel Oil is Viable and will work today, But the Press is owned by the Ultra-Rich

Is using vegetable oil for fuel in a diesel engine a new idea?

- No.
- Dr. Rudolph Diesel demonstrated his new invention at the World Exhibition in 1900.
- The fuel he used was pure peanut oil.
- He planned for farmers to grow their own fuel!
- The original engine was later modified to use petroleum diesel.

Biodiesel

Dr. Rudolf Diesel – 1895

The use of vegetable oils for engine fuel may seem insignificant today. But such oils may become in course of time as important as petroleum and the coal tar products of the present time.
The Carbon Footprint is massive **Negative 220 CO2** While absolutely NO Oxygen is made

<table>
<thead>
<tr>
<th>Process</th>
<th>CO2 Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction</td>
<td>100 lbs</td>
</tr>
<tr>
<td>Refining</td>
<td>60 lbs</td>
</tr>
<tr>
<td>Distribution</td>
<td>40 lbs</td>
</tr>
<tr>
<td>Utilization</td>
<td>20 lbs</td>
</tr>
<tr>
<td>TOTAL</td>
<td>220 lbs</td>
</tr>
</tbody>
</table>

Every Gallon of Fossil Fuel Gas Used Adds 220 lbs of CO2 to the atmosphere, and adds no Oxygen

BIO-Fuel

To Make + Use a Gallon of Gas from Vegetable Oil it takes lbs of CO2:
- Farming: 10 lbs
- Preparation: 10 lbs
- Distribution: 10 lbs
- Utilization: 22 lbs
- TOTAL: 52 lbs of CO2

Positve **1000 + O2**

Farmed Oil adds massive Oxygen, absorbs CO2 Saving Us All

Did you know that an acre of corn can transpire up to 400,000 gallons of water in one growing season?

10 sq meters of Vegetables will Reduce massive amounts of CO2 into Oxygen to make a gallon of oil Thus there is Massive benifits to the Environment

We are cleaning the enviroment as we drive
Farm Fuel or Fossil Fuel
The Bad Choices of the Past Have Jeopardized the Future of Humanity

Oil From Plants
Reduces CO2
makes Oxygen
and is Clean for our Environment

Oil Drilled from the Ground
Destroys Oxygen and makes excess Carbon Dioxide

Fossil Fuels
USE MAY PUT UP TO 30% OF SPECIES AT LIKELY RISK OF EXTINCTION.
Including People
Canola for Your Biodiesel

By Chris Anderson | January 17, 2008

Canadians typically grow more than 14 million acres of canola each year. Canola's vibrant yellow flowers have become a trademarked sight on the Canadian prairies. The now familiar oilseed, which has already reinvigorated prairie agriculture, has the potential to deliver a new golden opportunity—biodiesel—for growers, processors, retailers and consumers. The very properties that make canola oil the healthiest choice of all the vegetable oils also make it the perfect candidate for biodiesel. “This is an example of the tremendous versatility of this crop and, in particular, the value of canola oil,” says JoAnne Buth, president of the Canola Council of Canada. As such, there are many clear advantages to using canola as a biodiesel production feedstock.

Canola currently contributes more than $13 billion (US$12.9 billion) in economic activity to the Canadian economy. Whether it is used as an ingredient for food or renewable fuel, there is something to be said about why this crop, grown on more than 14 million acres of Canadian farm land, is the perfect candidate for biodiesel production.

High Efficiency
Canola seed has more than 43 percent oil content, higher than many other oilseeds including soybeans, which contain approximately 18 percent oil. This makes canola an extremely efficient North American feedstock for biodiesel production. The Canadian crop averaged 43 percent to 44 percent oil content over the past three years and is likely to make even further oil content gains. The new quality standards set for variety registration in western Canada will see oil content in new varieties increase 1.2 percent over the next five years. This change will ensure canola continues to deliver more oil per unit seed, improving processing efficiency.

“The value for canola is in the oil component,” explains Dave Hickling, vice president of utilization for the Canola Council. “It only makes sense for the industry to continue to focus on this strength, especially in light of increasing global demand for vegetable oils. It was not hard to get agreement from the industry that increasing oil content would benefit everyone in the value chain.”

Better Biodiesel
Besides its high oil content, canola delivers several other important advantages to biodiesel makers and users. At 7 percent saturated fat, canola has the lowest saturated fat level of all major vegetable oils. The low saturated fat content of canola oil means improved cold weather performance of the biodiesel. The truth is, even petroleum diesel will crystallize or gel at extremely cold temperatures. Pure canola biodiesel has a cloud point—the temperature at which small solid crystals form in the fuel—of 3 degrees Celsius (37 degrees Fahrenheit).
While low saturated fat levels improve cold weather performance, pure canola biodiesel also contains 10 percent oxygen by weight. It is this oxygen that leads to a reduction in emissions of hydrocarbons, toxic compounds, carbon monoxide and particulate matter. These benefits also apply to biodiesel blends burned in diesel engines. This means canola biodiesel is a cleaner-burning fuel than pure petroleum diesel.

Interestingly, the high-stability canola profiles that have been so successful in creating trans-fat-free solutions for the food industry offer all the advantages of conventional oil profile canola plus one-improved oxidative stability. The further reduction in polyunsaturated fatty acids of high stability canola oil has reduced iodine values and improved oxidative stability. Many other potential characteristics, such as high oil content, reduced saturated fat or decreased polyunsaturated fatty acids, have benefits for both fuel and food uses.

What makes canola good for food also makes it good for biodiesel. “Higher oil content, higher yield and the healthy fatty acid profile are ideal for both uses,” Hickling says.

Projected Canadian canola production

Canadian farmers are expected to grow more than 14 million metric tons of canola by 2015.

The Earth-Friendly Fuel
Canola biodiesel produces only about 12 percent of the carbon dioxide of petroleum diesel fuel. This difference becomes even more pronounced when adding in some of the common canola production practices. The Intergovernmental Panel on Climate Change has calculated that biodiesel produces about 0.4 kilograms of carbon dioxide per liter (3.3 pounds per gallon) and 0.6 kilograms of nitrogen oxides per liter (5 pounds per gallon) of fuel compared to petroleum diesel which produces 4 kilograms of carbon dioxide per liter (33 pounds per gallon) of fuel.

In "From Grain to Oil,” part of a study titled A Review of Environmental Assessments of Biodiesel Displacing Fossil, Diesel, University of British Columbia researcher Hadi Dowlatabadi calculated greenhouse gas emissions specifically for canola biodiesel and related production practices in Canada. In conventional tillage systems, he observed similar levels of carbon dioxide emissions but much lower levels of NOx emissions as calculated by the IPCC. When Dowlatabadi added “zero-till” practices, the amount of carbon returned to the soil while producing the crop actually exceeded the amount of carbon dioxide produced by the biodiesel. Clearly, canola biodiesel offers a tremendous opportunity to reduce greenhouse gas emissions relative to petroleum diesel products.

According to IPCC calculations and University of British Columbia observations, the differences between the NOx emissions are related to differences in growing conditions in Canada relative to hotter and more humid growing conditions. Canadian growing conditions limit the production of NOx.

A 2006 study by the U.S.-based National Renewable Energy Laboratory showed that there were no statistically significant differences in NOx emissions between pure petroleum diesel and biodiesel blends of up to B20.

In addition to reducing greenhouse gas emissions, canola biodiesel biodegrades five times faster than petroleum diesel. Each year, Canada records an average of 3,500 spills of diesel with an average of 9 tonnes (9.9 tons) per spill. Pure biodiesel biodegrades in one to two weeks, but even biodiesel blends biodegrade faster than petroleum diesel itself.
Food and Fuel
The increased emphasis on producing crop feedstocks for biofuels has led to speculation about shortages in food supplies and increased costs for consumers. Neither scenario is likely in Canada. Canola producers already grow 1 million to 2 million tonnes (1.1 million to 2.2 million tons) more canola seed than is currently used domestically or for export. While some "carryout" of canola stocks is necessary to ensure supply all year long, too much inventory can drive commodity prices down.

The current biofuels mandate from the Canadian federal government calls for 2 percent of diesel fuel to come from renewable sources by 2012. If only canola was used to meet this mandate, which is unlikely, 1.6 million tonnes (1.8 million tons) of canola would be needed. Canola carryout for 2006-'07 was projected to be just less than 2 million tonnes (2.2 million tons).

Producing oil from canola, whether it is for food or fuel, creates canola meal, an excellent animal feed. An increase in the supply of canola meal will mean more food production in the form of dairy, poultry and pork. Significant increases in canola oil use could make canola meal prices drop, making it a more attractive feed product for the livestock and dairy industries. Western Canadian farmers have shown they can grow enough canola to meet biodiesel demand and more. Statistics Canada predicted record plantings of canola this season based on its early spring seeding intentions survey.

Higher-yielding canola varieties are helping to increase grower profits. The long-term average yield for canola has been 26.6 bushels per acre (0.6 metric tons per acre or 1.5 metric tons per hectare) but the average yield for the past three years has been 30 bushels per acre. This yield increase has been due to the adoption of hybrids, better agronomic management and improved genetics.

The trend seems likely to continue. The Canola Council is predicting that yields could improve by as much as 35 percent by 2015.

Growing into the Future
The trend toward higher acres and higher yields for canola is a key factor in the Canola Council's new strategic initiative "Canola - growing great 2015." The strategy outlines key goals for both the supply and demand sides of the industry. "These goals are a result of careful analysis on mega trends affecting all vegetable oils and specific markets where canola has a strategic fit," Buth says. "Demand will be the key driver for the next several years but Canadian producers have the capacity to meet those demands."

The council's 2015 strategy document predicts that biodiesel demand will account for 2 million tonnes (2.2 million tons) of canola domestically and another 500,000 tonnes (550,000 tons) going to biodiesel production in export markets. The Canola Council is predicting that Canadian production of canola will exceed 15 million tonnes (16.5 million tons) by 2015. "If not sooner," Buth says. "There is a very real possibility that global demand for canola will rise even faster and farmers will respond to those market signals."

Increased adoption of hybrids, higher-yielding genetics, new traits and improved production practices will create more value through higher yields and better stress tolerance. Higher yields coupled with more acres and increased oil content will ensure a steady supply of canola for food and fuel for the future.

Biofuels represent a significant new opportunity for Canada. Canola is a key feedstock for producing biodiesel, and the Canadian canola industry is well prepared to invest in this opportunity.
You Can Use Vegetable Oil in Diesel Cars to Save Money as Gas Prices Skyrocket!

The Media wants more money to bury the story about growing oil
Growing our Oil would mean a major Shift in Financial Power

I ain't Giving up, my money easily

It is about time someone value me

Health effects of pollution

Air pollution
- Nerve damage
- Lead
- CO
- Particulate matter
- Ozone
- Volatile organic compounds

Headache
Fatigue

Respiratory illness
- SO₂
- NOₓ

Cardiovascular illness

Gastroenteritis

Cancer risk

Nausea
Skin Irritation

Water pollution
- Bacteria
- Parasites
- Chemicals

Soil contamination
- Pesticides
MEDICAL EXPOSE
IS DESIGNED TO EXPOSE
CHARLATANS IN ALL OF
HEALTH AND MEDICINE

I have Sworn on the Altar of God to
Oppose any Tyranny Over
The Minds of Men

Dr. Larsen, Internist:
Help Me to Stop
FRAUD in
Medical Sales

“Desire” is one of our
best contributing editors

Medical EXPOSE
http://www.medicalexpose.com/